Directing Group-Controlled Regioselectivity in an Enzymatic C–H Bond Oxygenation

نویسندگان

  • Solymar Negretti
  • Alison R. H. Narayan
  • Karoline C. Chiou
  • Petrea M. Kells
  • Jessica L. Stachowski
  • Douglas A. Hansen
  • Larissa M. Podust
  • John Montgomery
  • David H. Sherman
چکیده

Highly regioselective remote hydroxylation of a natural product scaffold is demonstrated by exploiting the anchoring mechanism of the biosynthetic P450 monooxygenase PikCD50N-RhFRED. Previous studies have revealed structural and biochemical evidence for the role of a salt bridge between the desosamine N,N-dimethylamino functionality of the natural substrate YC-17 and carboxylate residues within the active site of the enzyme, and selectivity in subsequent C-H bond functionalization. In the present study, a substrate-engineering approach was conducted that involves replacing desosamine with varied synthetic N,N-dimethylamino anchoring groups. We then determined their ability to mediate enzymatic total turnover numbers approaching or exceeding that of the natural sugar, while enabling ready introduction and removal of these amino anchoring groups from the substrate. The data establish that the size, stereochemistry, and rigidity of the anchoring group influence the regioselectivity of enzymatic hydroxylation. The natural anchoring group desosamine affords a 1:1 mixture of regioisomers, while synthetic anchors shift YC-17 analogue C-10/C-12 hydroxylation from 20:1 to 1:4. The work demonstrates the utility of substrate engineering as an orthogonal approach to protein engineering for modulation of regioselective C-H functionalization in biocatalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A competitive Diels-Alder/1, 3-dipolar cycloaddition reaction of1-H-imidazole 3-oxide toward sulfonyl methane. A DFT study on the energetic and regioselectivity

The dual diene/1,3-dipolar character of 1-H-imidazole 3-oxide, HIO 1, allows this compound toparticipate in a competitive Diels-Alder (DA)/1,3-dipolar cycloaddition (13DC) reaction toward C=Sdouble bond of the electro-deficient sulfonyl methane SFM 2. The B3LYP/6-311++G(d,p) calculatedrelative Gibbs free energies indicate that among the studied 13DC and DA reactions, former iscompletely preferr...

متن کامل

Origins of regioselectivity and alkene-directing effects in nickel-catalyzed reductive couplings of alkynes and aldehydes.

The origins of reactivity and regioselectivity in nickel-catalyzed reductive coupling reactions of alkynes and aldehydes were investigated with density functional calculations. The regioselectivities of reactions of simple alkynes are controlled by steric effects, while conjugated enynes and diynes are predicted to have increased reactivity and very high regioselectivities, placing alkenyl or a...

متن کامل

Palladium-catalyzed direct functionalization of 2-aminobutanoic acid derivatives: application of a convenient and versatile auxiliary.

The last decade has witnessed great progress on transitionmetal-catalyzed C H bond functionalization. Although many synthetically useful methods for regioselective functionalization of the C(sp) H bond of arenes and heteroarenes have been discovered, direct functionalization of C(sp) H bonds in common alkyl groups is still challenging. This challenge arises from the inert nature of most C(sp) H...

متن کامل

Distal-Selective Hydroformylation using Scaffolding Catalysis

In hydroformylation, phosphorus-based directing groups have been consistently successful at placing the aldehyde on the carbon proximal to the directing group. The design and synthesis of a novel catalytic directing group are reported that promotes aldehyde formation on the carbon distal relative to the directing functionality. This scaffolding ligand, which operates through a reversible covale...

متن کامل

Rhodium-catalyzed intermolecular C-H silylation of arenes with high steric regiocontrol.

Regioselective C-H functionalization of arenes has widespread applications in synthetic chemistry. The regioselectivity of these reactions is often controlled by directing groups or steric hindrance ortho to a potential reaction site. Here, we report a catalytic intermolecular C-H silylation of unactivated arenes that manifests very high regioselectivity through steric effects of substituents m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014